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The flow field about a small, slowly sedimenting particle in a centrifuge is 
examined using matched asymptotic expansions. The near field is dominated by 
Stokes flow while in the far field a non-axisymmetric cubical conical structure 
(a viscously modified Taylor column) is found. This far field induces a Coriolis 
modification in the near field leading to Coriolis corrections to the Stokes drag 
law. The Coriolis modification of the predicted molecular weight (if the particle 
were a molecule) of a small particle is calculated. The analysis is applied to an 
unbounded fluid as well as to a fluid bounded between parallel plates oriented 
normal to the rotation vector. In  the latter case the governing equations for the 
rotating fluid are posed as a self-adjoint system of partial differential equations 
and solved using (symmet,ric) Green’s matrices. 

1. Introduction 
The centrifuge is one of the tools used to infer molecular weights. One method, 

called equilibrium sedimentation, involves the spinning of the solution at  low 
rotation rates. The rate must be sufficiently low so that sedimentation is balanced 
by back diffusion. The second main approach, called velocity sedimentation, 
involves large rotation rates. The rationale for the method is discussed in various 
sources. Bowen (1970), for example, examined the forces on a single particle, 
assuming instantaneous equilibrium (also see Schachman 1959, chaps. 4 and 6).  
The force balance considered is purely radial: a Stokes drag balances the local 
gra,vity, the centrifugal force. It seems clear, however, that, in a rotating system, 
non-radial forces must exist. A particle more dense than its fluid surroundings 
should not sediment radially but should be deflected by the presence of the 
Coriolis acceleration. Hence, even if a local equilibrium is assumed (this seems 
satisfactory if the drift speed is small enough), both radial and azimuthal forces 
are present and hence a t  least two components in the force balance are necessary. 

The present study seeks to modify the Stokes drag law for an isolated spherical 
particle in an incompressible Newtonian fluid to account for the presence of 
rotation. Sharp & Beard (1950) and Cheng & Schachman (1955) have used 
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centrifugation to test the validity of the Stokes drag law but did not use rotational 
corrections. Langford (1968) sought to isolate the neglected dynamical effects 
inherent in the creeping-flow approximation but his approach was not fully 
consistent. He used an empirical drag relation that accounted for inertial but 
not Coriolis effects. Berman (1  966) predicted a Coriolis deflexion of a particle 
influenced by Stokes drag but his effects were O ( T )  as T-t 0,  where 

T = 2Qa2/v. 

The Taylor number T contains the constant rotation rate Q of the centrifuge, the 
radius a of the particle and the kinematic viscosity v of the surrounding fluid. 
The results of the present theory give corrections O(Tt), which for small values 
of T dominate those of Berman. If U is the drift velocity of the particle in the 
frame of reference rotating with the centrifuge, the Stokes drag is a force - D U ,  
where D = 67fapv. The sum of this drag and the net centrifugal force F must 
vanish, hence determining U in terms of F. When Coriolis corrections are included, 
the drag force is no longer parallel to U, but has a transverse component 
g(+T)a DU in the direction of U x 8. Since the net centrifugal force, which 
drives the motion, is radially outwards from the rotation axis, the particle does 
not move precisely in this direction but is deflected through an angle 

B = -  a (. IT)& + O ( T )  
5 2  

and follows a spiral that makes a constant angle with the local radius vector in 
the plane normal to S2. 

This theory is linear in the particle speed U and the inertial terms Du/Dt in 
the equations of motion of the fluid are everywhere completely neglected com- 
pared with the viscous and Coriolis terms. I n  addition the particle radius a is 
supposed small compared with the Ekman length (v/2Q)8, so that the Coriolis 
force causes only a small modification of the Stokes flow near the sphere. At 
distances comparable with or greater than the Ekman length, on the other hand, 
the flow regime is completely altered and matched asymptotic expansions in 
powers of TB are used to relate it to the Stokes flow. The governing equations near 
the sphere have a formal O ( T )  Coriolis term. However, the presence of the sphere 
drastically alters the flow far from the sphere and this far-field correction induces 
an O(T4) correction near the sphere (through a matching condition). This outer 
flow perceives the particle as being a point force a t  O(T*),  so that the particle 
shape and orientation do not affect this Coriolis correction. I n  the non-spherical 
case, the drift velocity U may not be parallel to the centrifugal force F on the 
particle even if the Coriolis forces are neglected, so that the Stokes drag coefficient 
D may have to be replaced by a drag tensor whose elements depend on the 
particle orientation. A complete analysis is complicated but, as argued above, it 
is easily seen that the additional effect of the Coriolis forces to O(TB) is still to 
cause a lateral drift (F/lOnpv) (Q/v)* t ,  where t is a unit vector in the direction 
of F x a, regardless of size or shape. 

The Coriolis modified drag law is used to find the modification of the predicted 
molecular weight of isolated particles in a centrifuge compared with that of the 
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Stokes drag law. It is found that within the limits of the theory it is possible for 
the modification to lead to I0 % changes. 

Fujita (1962, p. 8) mentions the Coriolis effect but dismisses it on the basis of 
the work of Hooyman et al. (1953), who consider a distribution of particles in 
a thermodynamic analysis. They find that there is no explicit appearance of the 
Coriolis effect in the entropy production and ignore the implicit effect. I n  fluid 
mechanical terms this means that in the kinetic energy equation of the fluid 
formed by dotting the Navier-Stokes equations with the velocity vector, the 
Coriolis force does not appear explicitly since it is a conservative field. However, 
the reduced pressure is affected, so that the force exerted by the fluid on the 
particle is modified. Thisis precisely the effect being calculatedin the present work. 

The drastically altered far field exhibits a non-axisymmetric cubical conical 
structure above and below the particle which is a viscosity-modified version of 
a Taylor column. The structure is given in detail. 

This analysis has some similarities to that of Childress (1964), except that the 
particle motion is perpendicular rather than parallel to the rotation axis. These 
approximations are self-consistent within the Reynolds radius vlU if, besides 
the Taylor number, the Rossby number U(vC2-g is also much less than unity. 
I n  practice, both these conditions are usually satisfied if the particle is small 
enough. 

If the fluid is bounded by a pair of rigid parallel walls normal to  S2 with the 
particle in the midplane, the deflexion angle 8 is diminished to an extent which 
varies monotonically with the wall separation (at least correct to O(T4)) .  Besides 
the wall effect, this part of the analysis shows that the set of equations for the 
vertical velocity and vertical vorticity for linearized rotating flows can be posed 
as a self-adjoint system which can be solved using (symmetric) Green's matrices. 
This approach holds for quite general rotatling fluid systems and so should be 
useful in other contexts. 

2. The slow motion of a sphere in an unbounded rotating fluid 
2 .  I. The governing system 

Let us consider an infinite homogeneous body of fluid of kinematic viscosity v and 
density p which rotates at constant angular velocity 8. A sphere of radius a is 
translating unidirectionally orthogonal to S2 with speed U.  

To describe the motion a Cartesian co-ordinate system (x*, y*, 2") is erected 
whose orthonormal unit vectors (hl, h,, h,) are as follows. The system rotates 
with angular speed Q = 181 about the z* axis h,, so that 51 = ah,, and translates 
with the speed U .  The direction of this unidirectional motion is defined to be in 
the negative h, direction; hence, with respect to the rotating translating co-ordi- 
nate system fixed to the sphere, the fluid far from the sphere appears to be 
translating in the positive h, direction. 

The phenomena to be described are governed by the steady Navier-Stokes 
equations linearized in this co-ordinate system : 

0 = - V*P* - ah, x V* + vV*~V*, (2.1) 
14-2 
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where the reduced pressure P* satisfies 
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p" = p* - 1 Q2 x*2 
2 P  ( +Y*2) 

and p" is the pressure. The continuity equation for an incompressible fluid has 
the form 

V" .v" = 0. (2.2) 

The appropriate boundary condition on the sphere is that 

v* = 0 on r x  = a .  

v*-tUhl as r*+oo. 
Far from the sphere 

( 2 . 3 ~ )  

(2.3b) 

The neglect of the time derivatives and the loss of advective terms demand 
some explanation. In steady-state Stokes-Oseen theory the Reynolds radius 
rR = v/U is the distance from the particle (in an order-of-magnitude sense) a t  
which the inertial terms v* . V"v" become comparable with the viscous terms. 
I f  the Reynolds number is small, rR 9 a, there is a region around the particle 
where the viscous terms dominate. In  a rotating fluid the Ekman radius 
rE = (v/2!2)& is the distance at  which the Coriolis forces first become comparable 
with the viscous ones. If rR B rE B a, the Stokes flow around the sphere is 
modified by the Coriolis forces, rather than the inertial ones. The latter become 
important only a t  very large distances, and the dominant corrections to the 
Stokes drag law are provided by the Coriolis forces, not the inertial ones (see 8 4). 

A final assessment of the importance of time derivatives av*/at* (in a frame of 
reference moving with the particle) can only be made after solution of the equa- 
tion balancing the drag forces and the net centrifugal force F, and computation 
of the particle path. As the particle moves radially, F will change with time, and 
so will U. However, the time scale for this is RIU, where R is the distance from 
the axis of rotation. If U/RQ < 1, then Jav*/at*J < 1 2 8  x vI everywhere and 
neglect in (2.1) would seem justified. 

The following parameter values are taken from an experiment by Sharp & 
Beard (1950) to determine the validity of the Stokes law. The acceleration used 
in the centrifuge was Q2F = 28908 M 2.83 x 106cm/s2, F = 6.5cm was the mean 
radius of rotation of the rotor and Q = 6.6 x 102rad/s was the actual rotation 
rate. The density difference was p-p = 0.02gm/cm3, where p is the density of 
the polystyrene latex (PSL) particles used and p is the density of the fluid. The 
particle size was a M 1300A = 1.3 x 10-5cm, and was to be determined accu- 
rately by the experiment. This particle size is only eight times those of some 
plant viruses. The force 'balance ' between centrifugal and drag forces (Bowen 
1970) can be used to approximate a typical drift speed U :  

Then, the Reynolds radius rR = 47 ern and the Ekman radius rE = 2.7 x 
The Taylor number T = 2Qa2/v = (a/rE)2 = 2.3 x 

cm. 
and for this experiment 
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even Tt,  t,he appropriate small parameter, was still less than 0.005. Coriolis 
corrections in this case were then probably of slight practical importance. 

On the other hand, for some industrial applications the particle sizes of 
interest may be as large as cm. For the same values of the other parameters, 
the drift speed U is now closer to 1 cm/s and hence rR = For such larger 
particles the hierarchy of length scales is still retained. Then, T4 N” 0.36 and the 
deflexion angle 0 is substantial. For still larger particles an expansion in powers 
of T4 is of dubious validity. Childress (1964) defined a parameter 

a = TRe@ = (2ClrE/U)2, 

where Re = Ua/v is the particle Reynolds number. I n  terms of these parameters, 
the regime of interest is a --f cc and, in the case of particles of radius em, the 
worst case for the present theory leads to a value a = 8.3, which according to his 
equation (20 a )  gives an error in the order-one drag correction of 7 parts in 332. 
Thus it is felt that, for motion in a centrifuge, advection need not be considered 
in a first approximation. 

It is now necessary to identify non-dimensional scales for the problem. As in 
the case of the slow motion of a sphere in a non-rotating fluid, two possible non- 
dimensional scales for asymptotic expansions can be identified. They will be 
called inner and outer scales, and the next two subsections will be devoted to 
defining them. The only portion of the inertial force to be retained in the analysis 
will be the Coriolis force contribution. 

2.2. The inner equations 

I n  a neighbourhood of the sphere, the pertinent length scale must be based on 
the size of the sphere. Non-dimensionalize by writing 

v*  = U v ,  rs = ar, P* = pvUP/a. (2.5a,b,c) 

The inner equations become 

0 = - V P - T h , x v + V 2 v ,  

0 = v.v, 
( 2 . 6 ~ )  

(2.6b) 

where T = 2Qa2/v. ( 2 . 6 ~ )  

The scaled boundary conditions are 

v=O on r = l  (2.6d) 

and P+O, v-th, as r+m. (2.Ge) 

2.3. The outer equations 

The study of creeping flows in non-rotating systems (Kaplun &I Lagerstrom 1957) 
has shown that, if the radius a is used as the length scale, non-uniformities in the 
approximate solution occur in the far field. A different far-field length scale must 
be found. 
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A formal search for outer variables is begun as follows. In  the outer region, the 

r’ = T$r, v‘ = v, P’ = T-tP.  (2.7a, b, c )  

length scale is the Ekman radius. Write 

The outer equations then have the form 

i0 = - V’P’ - h, x v’ + V’zv’, 

0 = V ’ . V ’ .  

(2.8 a )  

(2.8b) 

The appropriate boundary conditions must express the fact that the free stream 
is approached far from the body: i.e. 

v’+-hl as r’-+m. ( 2 . 8 ~ )  

The outer regime is characterized by a formal retention of the full linearized 
momentum balance: pressure-gradient, Coriolis and viscous terms. As T +- 0, 
r’-+ 0, so that in the outer region the sphere is seen as a single point r‘ = 0. This 
point affects the flow field by exerting point forces (and higher-order contribu- 
tions) on the fluid. A formal derivation using a multipole expansion is given in 
appendix A. These point singularities appear on the left-hand side of ( 2 . 8 ~ ) .  The 
leading term is O(TB) in outer variables and is a point force called a Stokeslet. 
The left-hand side of ( 2 . 8 ~ )  corresponding to the Stokeslet is 6778(r’) a t  O(Tk) 
as given in (A 8). The solutions to the O(1) and O(TB) problems will be obtained 
and shown to satisfy the matching conditions of Kaplun & Lagerstrom (1957). 

2.4. The inner expansion at O(1) 

I n  spite of the fact that the Taylor number appears in the differential equation 
to the first power, the matching conditions suggest an O(T3) correction to the 
O( 1) terms. Hence, the formal inner expansion is obtained by substituting 

v = v(O)+T:v(l)+ ..., ( 2 . 9 ~ )  

p = PCO) + T:P(a + ... (2.9b) 

into system ( 2 . 6 ) .  The O(1) terms are as follows: 

0 = -VP(O)+V2v(”, 0 = v .v(*). (2.10a,b) 

One solution of (2.10) is the Stokeslet. The Stokeslet exerts a drag force of 
magnitude 6n in the x‘ direction. The unit Stokeslet is defined by 

S = 8,hl+S,h2+S,h3, (2 . l la )  

where (2.11 b )  

(2.11 c) 

(2.114 

and 
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The corresponding vertical vorticity component of the Stokeslet is 

1 a i  
= 4n [&)I. (2.11 e )  

The complete solution of (2.10) satisfying boundary conditions (2 .6d,  e )  is 
given by 

v = h l + 6 ~ S - i V  t i r )  - 

The last term represents a dipole which decays like r3 as T+CO whereas 
IS1 N rl. Hence, the most important terms for matching to the outer solution 
are h, and 677s. The strength of the Stokeslet is determined solely by the force F 
that the particle exerts on the fluid and is independent of the particle shape or 
orientation even if i t  is tumbling. This well-known result follows by recalling that 
in Stokes flow the viscous stresses can redistribute external forces but cannot 
balance them. Thus the stress integrated over the surface of any sphere enclosing 
the origin must equal -F  independent of its radius. At large distances, only 
the Stokeslet is important since its stresses are O ( T - ~ ) .  

2.5. The outer expansion at O(1) and O(T4) 
Let us look for solutions of the form 

w;(r‘) = w;(o)(r’) + Ttw;(l)(r’) + . . . , (2.12a) 

P’(r’) = P’(O)(r’) + T-$P’(l)(r’) + . . . . (2.12b) 

The expansions (2.12) are substituted into the form of (2.10) for forcing by an 
O(Tfr) Stokeslet, i.e. the left-hand side of ( 2 . 1 0 ~ )  is given by T*6nSiia(r’). At O(1) 
there is a geostrophic balance: 

v;(@ = ail, P’(0) = -9’. (2.13a,b) 
At O(T4) the equations are 

V’%;(l) - ei3k w;d(1) - aP’(l)/ax; = 677 ail 8’(r’) ( 2 . 1 4 ~ )  

and a w p p x ;  = 0. (2.14b) 

The appropriate boundary equations are 

v;(l)+O as T’+CO.  ( 2 . 1 4 ~ )  

The superscripts will henceforth be deleted. 
Let us denote the Fourier transform of v’(r’) by $’(k), so that 

(2.15) 

where k = (k, I, m) is the wavenumber vector. If equations of the form (2.15) are 
substituted into (2.14a, b ) ,  i t  follows that 

a’ = - 6 ~  (m2+Z2) Ik12/(lk16+m2), ( 2 . 1 6 ~ )  

8‘ = 64kZ I k[ + m2)/( I kI6 + m2), (2.16b) 

3’ = 64km I kl - d)/( I k l 6  + m2). ( 2 . 1 6 ~ )  
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The transform of the z component of vorticity is given by 
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c‘ = 6n(iZ I kI4 + im2k)/( 1 kI6 + m2). (2.16d) 

Although integrals like (2.15) are not absolutely convergent near the origin these 
expressions may be interpreted as generalized functions (Gel’fand & Shilov 1964). 
Consider the inverse transform of, say, the y component of velocity: 

eik. r’ dk. 3 kZlk(2+m2 
o‘(r‘) = - 

4n2/  (kI6+m2 
(2.17) 

(Henceforth, a single integral sign without limits denotes integration over all 
space.) This integral contains all the information about the y component of the 
outer flow field to O(T4) but is not convergent for r’ = 0. Since the Stokeslet 
serves as a force singularity a t  r’ = 0, if viewed from the outer region, it seems 
reasonable to attempt to evaluate the integral in (2.17) minus the lateral Stokeslet 
velocity. The remaining difference is convergent a t  r’ = 0. The result is 

where 

The integral can be evaluated using spherical co-ordinates. The result is 

V’ - 6,s; I r t Z O  = 31542. (2.18 a) 

The components u’, w‘ and 5‘ follow in a similar manner: 

(2 .18 b )  

( 2 . 1 8 ~ )  

(2.18d) 

Further terms in the near-field outer expansion about r‘ = 0 may be extracted 
and are as follows: 

( 2 . 1 9 ~ )  

(2.19d) 
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The expansions (2.19) represent the near-field expansions as r’+ 0. It will be 
shown in the next section that these components satisfy the equations of motion 
and that they match the asymptotic expansions in inner variables for flow near 
the sphere. 

2.6. Matching and drag modification 

Comparison of (2.19) and (2.11 f), bearing in mind that r’ = T h ,  shows that 
these solutions correspond in the region r’ --f 0, r -+ co, in so far as the first two 
terms in each are alternative representations of the same function, The uniform 
stream h, appears in both. The Stokeslet field in the inner region decays like r-l 
as r --f co and so appears as a T b - l  singularity at the origin of the outer expansion. 
The dipole field V(h, . r/r3),  on the other hand, is comparable in magnitude with 
the Stokeslet field near the sphere where r - 1, but would correspond to a term 
O(T%Y’-~)  in (2 .11 f ) .  This is negligible to O(T4).  In  a similar way the terms 
O(T*r’2) in (2.19) would be O(Th) in the inner region and are absent from (2 .11 j ) .  
However, the uniform stream T4(5/742, 3 / 5 4 2 , 0 )  in the neighbourhood of the 
origin in the outer expansion induces an O(T4) correction to the inner Stokes 
flow. This correction is easily estimated, for i t  is associated only with a change 
in the boundary conditions as r-fco, and that change corresponds simply to 
altering the direction and magnitude of the incident uniform stream. The 
associated drag on the sphere is then 

D = Gn((l ,O,O)+T:(5/742, 3 / 5 d 2 , 0 ) + O ( T ) } .  (2.20) 

This result is the central one of this paper and it shows clearly why the dominant 
correction due to the rotation is O(T*) ,  arising predominantly from effects far 
from the sphere itself at distances comparable with the Ekman radius. This is in 
contrast to that effect of rotation originating near the sphere which is O(T) .  

2.7.  Far-jield structure 

At distances large compared with the Ekman radius, the qualitative behaviour 
of the velocity field is governed in a gross sense by a geostrophic balance between 
Coriolis and pressure forces. Hence, t,here is a tendency for the length scale in the 
z direction to be much longer than that in the x and y directions, and the x, y 
velocity divergence is small. These features (characteristic of what is generally 
known as a Taylor column) are local consequences of the basic rotation. For the 
global structure, viscous forces must be significant (since the inertial terms have 
been entirely neglected). The outcome is a ‘cone’ that is most simply expressed 
in terms ofthe variables z‘, 7 = (x12+y’2)4/1z’19 and a = tan-l(x’/y’). This cubical 
cone is not axisymmetric; the dominant terms a t  large [z‘ l have w‘ proportional 
to cos a, u‘ proportional to cos 2a and 21‘ proportional to sin 2a. This asymmet,ry 
reflects that in the Stolreslet singularity which forces the whole motion. AS 
Iz‘] +co, the cone decays to zero; w‘ N 12’1-1 for fixed 7 and a. The surfaces 
7 = constant for the large values of r’ being considered here are greatly elongated 
in the z‘ direction. Alternatively, if one looks in unsealed co-ordinates (x’, y‘, z‘), 
then the field appears locally cylindrical. 
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The structure can be obtained by examinat,ion of, say, the velocity com- 

For convenience, let us write from (2.17) 
ponent 0’. 

and 

(2 .21  a)  

(2 .21 b )  

when 

Int!roduce cylindrical co-ordinates 

w’(r’) = w;(r‘) + wh(r’). 

k = hcos8, I = Asin8 

and write X’ cos 0 + 9’ sin 8 = (T’ sin (8 +a).  
Then from (2 .21 a) ,  

Poles of the integrand occur when 

(h2+ m2)3 + m2 = 0, 
so that 

(2.22 a)  

where the m, are the roots of ( 2 . 2 2 a ) .  When r’ becomes large or when CT‘ and z’ 
become large, the major contribution t o  the integrand in (2.22 b )  occurs when 
m,(h) 12’1 (a complex quantity) has its minimum imaginary part, or perhaps 
where the denominator is small, or stationary, namely when 

3(h2+mn)2+ 1 = 0. 

The latter condition is incompatible with ( 2 . 2 2  a) .  Thus the minimum imaginary 
part occurs where h is small. Then, 

m,(h) - ih3 + O(h7),  

m2(h) - (+)+ ( 1  + i )  + O(h2), 

m3(h) - - (+)a (1 - i) + O(h2) 

implies that  exp [ imn(A)  Id I] becomes exponentially small as 12’1 +a. Thus 
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A similar examination shows that v;, which is independent of a, decays as 
Ix ' l -Q and is thus smaller for large 12'1. The dominant terms are then as follows: 

(2.23 b )  

( 2 . 2 3 ~ )  

( 2 . 2 3 d )  

An analogous structure in two dimensions has been studied by Bretherton 
(1967). He solved the initial-value problem governing a circular cylinder towed 
through a fluid. His results show that the factor exp ( - A 3  lz'l) is due to internal 
waves of wavenumber h and zero frequency that propagate along the rotation 
axis and decay under the effect of viscosity. It is this factor that determines the 
similarity parameter 7. 

3. The slow motion of a sphere in a rotating fluid bounded between 
parallel planes 

3.1. T h e  equations of motion, scaling and boundary conditions 

The problem of $ 2  is modified by the insertion of a pair of parallel plates 
perpendicular to 51 and separated by a distance 2 L .  The plates rotate with angular 
velocity G?. A sphere of radius a moves at  right angles to $2 along the midplane. 
The same co-ordinate system as before is used, i.e. a Cartesian system that 
rotates with $2 and translates with the sphere. The appropriate boundary 
conditions on the plates are that 

v:g = Uh, a t  z* = + L .  ( 3 . 1 )  

There are now three scales: a, L and (v/Q)B. As before, it  is assumed that the 
Reynolds radius rR = v/U is much greater than any of these. Define three non- 
dimensional parameters : 

( 3 4  
2 Qa2 2QL2 T 9 a 

(E)  = L a  T = -  9 Tk'=-, 

The inner problem is the same as that in the unbounded flow: 

0 = -VP-Th3xv+V2V, 

0 = V . V .  

( 3 . 3 ~ )  

(3.3b) 

The inner expansion is also preserved: 

v = v(O)(r)+TJv(l)(r)+ ..., ( 3 . 3 c )  

with r = a-k* and v(O)(r) = 6nS(r), where S represents1a Stokeslet defined on 
l < r < c o .  
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The outer length scale L in this bounded problem is provided by the plate 

(3.4) 
spacing. Here ro = L-k* = aL-lr =  TIT,)^ 

on - cg < xo, yo < rn and - 1 6 zo < 1. It is assumed that a/L Q 1, so that 
(T/TL)i < 1.  

Intermediate scales are determined by the ordering of a, L and (v/Q)*. There 
must exist scaled radii r’ and r’’ given by r’ = T3r and r’’ = T z h ,  which are not 
as ‘far out) as ro. (This r‘ is the outer radial co-ordinate of the unbounded 
problem.) Moreover, if TL 1, then zo might have a boundary-layer scale, say 
zB  = T i  (1 zo). The problem then falls into the province of almost-rigid rotations 
considered by Stewartson (1957), Greenspan (1968, p. 100) and Moore & Saffman 
(1969). If TL is not large, then the ‘boundary layers’ a t  the plates will overlap 
with the r’ and r” regions. This case can only be treated by solving the differ- 
ential system for arbitrary TL. This will be done later. 

3.2. The interior Jluid motion for TL large 

The components w’ and 5‘ are the most convenient to examine. Their governing 
equations can be obtained directly from system (2.14) and are as follows: 

The boundary conditions are 

(3.5 a)  

(3.5b) 

The similarity variable in the outer region of the unbounded problem is 
7 = (~’1-*a’. This form survives in the bounded problem with (T’ = Tta,  for 
outer horizontal scale v0. The scaling is consistent with matching requirements 
for the dowest decaying parts at large distances of zu’(r’) and {’(r‘) in (2.23c,d),  
which are given by 

zu‘(x0, yo,zo) N ( ) c o s a ~ ~ s ~ e - s ’ ~ ~ ( q s ) d ~ )  ~Ztlz~l-1sgnz,, (3 .6a)  

and ~(zo,yo,zo) ( -+cosaS .+e-s’~~(7s)ds] T Z + I Z ~ ~ - + .  (3.6b) 

Hence, matching is possible using these scales if 

m 

0 

w0 = T ~ w ’ ,  c,, = T i c .  ( 3 . 6 ~ )  

In terms of these, (3.5) can be Fourier transformed in xo and yo as in definitions 
(2.15) and the result to O ( T i )  is as follows: 

(3.7 a) 
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The appropriate boundary condition is the familiar Ekman-layer suction, given 
as follows: 

a,( 1)  = T 2-4Tx*Q0( 5 I ) .  (3.7 b )  

The second-order system (3.7) is well posed. The solution is obtained by finding 
the Green’s matrix G (z ,E)  satisfying columnwise the differential equation 

and boundary conditions (3.7 b ) :  

From continuity and the definition of to, the other velocity components are 
given by 

0 O N -  gzZ(z0’ 0 )  + O(T&, (3.10 a )  
1Co+Ti*kD 6 6nZ2 

- ih2 QO(Z0) = 

The relevant terms from the Green’s matrix are 

g2,(z0, 0 )  = -h(coshA3+2-fT~*Asinhh3) [cosh(h3(1 - Izo l ) )  

+2-+T~*hs inh (h~( l -  Izol))]/[sinh2h3+2*hT~~cosh2h3], (3 .1 la)  

(3.11 b )  921, &a, 0 )  = ~ 2 9 z 2 ( ~ 0 ,  01, 

g11,5(zo, 0 )  = sgn (zo) h2(cosh h3 + 2-*T~*h sinh h3) [sinh (A3 (1 - Izol)) 

2-*T~*hcosh(h3(1 + Iz,~))] 
+ [sinh 2h3 + 2 * h T ~ 6  cosh 2A3]’ 

(3.11 c )  

912,5(ZO,O) = h-2911,&0, 0). (3.1 id )  

The contribution of the wall effect to the drag on the sphere and the velocity 
components a t  the edges of the Ekman layers can now be computed. 

For the unbounded flow the far field is given by (2.23). Then the wall effect is 
found by writing u‘ and v’ in ro variables and subtracting them from the corre- 
sponding components of the outer flow. 

The wall effect DL on the x component of the drag as TL -+ co is given by 

lim [T,*uo(ro) -u’(ro)]: 
r,+O 

h2[e-2hs( 1 - 2*AT,*) + 13 
o sinh 2h3 + 2*AT,* cosh 2A3 

Dl  N - $ T ~ 4 1  d h  + O(T$).  (3.12 a )  
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Similarly the wall effect DC on the y component is given by 
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lim [TZtvo(ro) -v’(ro)]: 
ro+O 

h4[cZA3( 1 - 24T~Qh)  + 11 dk  
o sinh 2h3 + 2 + h T ~ *  cosh 2h3 

+O(!&$). (3.12b) 

At the edge of the boundary layers, Jzo) -+ 1, the components are as follows: 

h2(cosh A3 + 2-3T,*h sinh h3) 
sinh 2h3 + 29hT,k cosh 2h3 u 2: +Ti+]o [Jo(hvo) - cos 2aJz(h~,)] dh + O(T$), 

- 
(3.13 al 

A2( cosh h3 + 2-*T,)A sinh A s )  
sinh ah3 + 24hT~) cosh 2h3 

sin 2aJ.(hv0) dh + O(T,&), (3.13 b )  
o 

The vertical component of velocity a t  the edge of the boundarylayer is O(T& 
smaller than the others. This is a consequence of the continuity equation and the 
condition that the boundary-layer vertical component vanish a t  the walls lzol = 1. 

3.3. The drag on the sphere for arbitrary TL 

A typical component of the Stokeslet, say S,, is 

based on the length scale a. In  this inner domain, S, = O( 1) and u has the form 
u = 1 + 67rSu + O(T4). S, can be expressed in terms of outer variables using the 
length scale L:  

(3.14) 

Thus, to O((T/TL)*), the Stokeslet (3.14) does not vanish on zo = & 1 and so 
provides a boundary value v, = - 67rS on zo = t- 1. This is consistent with the 
reflexion principle (Happel & Brenner 1965, p. 286). 

The outer equations, characterized by the length scale L, can be written as 
follows : 

V ~ V ~ ~ - T , E ~ ~ ~ V ~ ~ ~ - ~ P ~ / ~ ~ ~ ~  = 67r(T/TL)4S(r0) Sil+O(T/TL). (3.15) 

In  all of what follows, let us consider TL as arbitrary but fixed. The expansion in 
this outer region has the form 

voi N v$)(ro) + Th&(r0) + . . . . (3.16) 

If expansion (3.16) is inserted into (3.15), it  follows that, a t  

v&$)(ro) = &, (3.17) 
and a t  O(Tt), 

P;v&) - TL~i3k ~ $ 2  - aPp/axoi = 6 n ~ ~ 4  6(ro) &, (3.18a) 

with av&$)/a~ot = 0. (3.18b) 
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Let us omit the subscripts and superscripts and understand that from now on 
only the O(T&) outer system will be considered. 

By Fourier transformation and elimination the system (3.18) can be written 
in terms of the transforms 8 and g of the vertical velocity and vorticity as follows : 

LY = f ,  

where 

and 

dz2 - A2)2  - TLd/dz  

(d2/d.z2 - A2) 

k8‘(2) 
Y = c), f = - i6nT~i  ( ,,,,,). 

(3 .19a)  

The boundary conditions are 

where 
Bx(Y( f 1)) = 0, (3.196) 

1 0 0 0 0 0  

B =  
0 0 0 0 0 0  
0 0 0 0 1 0  
0 0 0 0 0 0  

In appendix B, it is shown that system (3.19) is self-adjoint and hence has 
a symmetric Green’s matrix 9 which satisfies 

and has the form 
L9 = 6 ( Z - C )  I 

a,,(% t-; 4 G,,(z, 5; 4 
Each column of 9 treated as a vector satisfies the boundary conditions (3.19 b) .  
Such an approach has been used to compute wall effects in non-rotating flows by 
Cox & Brenner (1967).  

Given 9, the solution of system ( 3 . 1 9 ~ )  can be written in the form (see 
appendix B) 

(3.20) 

The lateral velocity v can be put in terms of 8 and f and hence expressed in 
terms of the G,, through (3.20) as follows: 
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The symmetry of the Green’s matrix (appendix B) gives 
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G m n h  t-1 = GnmG 2)’ 

8Gl,(t-’ t-)/dz = aG21(6> E P 6 .  so that 

Hence, the lateral velocity at z = 0 can be written as follows: 

-- 
k2 + 12 

The integrand in (3.21) is divergent at  x = y = 0 but can be evaluated as before 
by subtracting out the Stokeslet singularity. The value of v- BnS, gives the 
correction to the lateral velocity due to both Coriolis and wall effects. 

The appropriate Fourier-transformed Stokeslet components are given by 
A A 

S,  = $ikze-Alzl/h, 8, = &le-Alzl /A. 

In  terms of these, the value of L!?~ follows: 

(3.22) 

This is to be evaluated a t  x = 0. 

thought of as an expansion about r = 0: 
The departure of the lateral velocity from that due to the Stokeslet can be 

Polar co-ordinates are introduced into (3.23) for both the physical and 
Fourier-transformed variables. The integral over angle can immediately be 
evaluated. The integrand a t  h = 0 is finite. 

The terms which are asymptotically O(h-l)  as h --f 00 cancel and the integml 
(3.24) converges for all g. Now let g + O .  The non-zero contribution to the 
integrand comes from the term Q12, a(h) .  

The perturbation of the x component of velocity at  the origin may likewise be 
calculated and has the form 

The wall effect on the drag on the sphere can be extracted by computing the 
drag in the limit of zero rotation. This case of a sphere in uniform motion between 
fixed parallel plates has been computed by Faxen (1922) using the method of 
reflexions. The drag is obtained here by examining a Stokeslet between two walls 
(cf. Blake 1971) through the use of (3.19) with TL = 0. 
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Rotational Non-rotational 
I 

A 
3 - 

*?, D ,  D ,  Lb D, 
M) 3/5J2 = 0.424 51742 = 0.505 
10 0.417 0.470 
9 0.464 
8 0.416 0.459 
7 0.454 
6 0.412 0.444 
5 0.403 0.430 
4 0.378 0.414 
3 0.321 0.422 
2 0.228 0.531 
1 0.116 1.008 

co 
10 

9 
8 
7 
6 
5 
4 
3 
2 
1 

0.000 
0.100 
0.112 
0.126 
0.143 
0.167 
0.201 
0.251 
0.335 
0.502 
1.004 

TABLE 1. Wall corrections to the drag with and without rotation 

The drag corrections for both TL + 0 and TL = 0 were evaluated numerically. 
The results in table I compare the O(T$) drag modifications experienced by the 
sphere a s  a function of TL. The limit TL-tm gives the unbounded case derived 
analytically in $ 2  while the non-rotating limit recovers the results of Faxen 
(1922). The lateral drag, purely a product of rotation, is a monotonic function 
of TL. The translational drag has a minimum occurring near TL = 13. From 
another point of view it may be seen from the last column that the ‘non-rotating 
contribution’ dominates this component until approximately TL = 13. 

4. Conclusions 
In a centrifuge the effective buoyancy force (centrifugal force) on a heavy 

particle is directed radially outwards from the axis of rotation and has a magni- 
tude that depends upon the particle position. The analysis considered the steady 
linearized equations for the flow of a homogeneous viscous liquid in a rotating 
translating reference frame centred on the particle. The neglect of the fluid and 
frame accelerations is consistent if the particle is small enough and the motions 
are slow (see 8 2).  The first case considered is when the boundaries are of negligibly 
small importance. 

Near the particle the Coriolis force is small compared with the viscous forces, 
and Stokes flow is the dominant first approximation (the inner solution). For a 
spherical particle the classical Stokes solution, the sum of a uniform stream U ,  
a dipole and a Stokeslet, provides the leading term of an asymptotic expansion. 
The force balance on a spherical surface enclosing the particle requires that the 
strength of the Stokeslet equal (pvaU)-l times the force exerted by the particle 
on the fluid, which in turn is the net centrifugal force on the particle. The formal 
correction to the Stokes flow due to Coriolis terms is O(T), where T = 2!2a2/v. 
However, the analysis shows that the true correction is O(T*), arising from a 
modification of the velocity U ‘at  infinity’. Viewed from a distance large com- 
pared with the particle radius a ,  the Stokes flow appears as a Stokeslet singularity 
in the radial direction. At distances comparable with the Ekman radius (v/2Q)* 

F L M  68 15 
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(the @utter region), Coriolis terms are comparable with the viscous and pressure 
forces, and the flow field completely different from Stokes flow. The detailed 
solution is given in 0 2.7.  Near the origin (which embraces the whole inner region) 
this solution represents the uniform stream U ,  the Stokeslet singularity and an 
additional uniform stream O(T4). The latter is a translation of a significant 
fraction of the fluid within the Ekman sphere (of radius ( v / 2 0 ) 4 ) ;  it is partly in 
the direction of the free stream U and partly transverse to it, i.e., perpendicular 
to both U and Q. I n  contrast to the Stokes region the net force associated with 
the viscous and pressure stresses across a surface enclosing the Ekman sphere 
approaches zero as the surface becomes large. The force applied to the fluid a t  
the origin, the Stokeslet, is balanced within this volume by the Coriolis force 
associated with an integrated drift in the direction transverse to the Stokeslet. 
The magnitude and the sense of the additional uniform stream a t  the origin are 
consistent with the following argument. 

The volume of the fluid participating in this drift is O((v/2!2)?) and if an 
average drift velocity is denoted by ad = (Ed ,  Zd),  the associated Coriolis 
force is 

2 8  x B,p(v /20 )3 .  

This must equal the Stokeslet force F. Hence 

in the direction of F x 8. For a sphere 

F = G~pvaU, 

so that the transverse fluid drift has magnitude 

- 
vd N TBU. (4.2) 

This is the average valuezover a large volume. The full analysis shows that the 
additional transverse velocity t i d  a t  the origin is 

The longitudinal component of velocity (in the direction of the applied force F) 
of a Stokeslet field is everywhere positive. However, (4.1) shows that this com- 
ponent of the integrated drift velocity over the Ekman region must be zero, 
Plausibly the additional effect of the Coriolis force above the Stokeslet field is in 
the opposite direction to the latter and has an average value ZL, over the Ekman 
sphere such that the corresponding volume flux Ud(v/Q)* is comparable to 
the Stokeslet flux ( P / p v )  (v/!2) contained within the same region. Hence, the 
additional longitudinal velocity ud a t  the origin, which should be comparable 
to G,, is 
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which serves to augment U. The full analysis shows that 

5 F Q +  
7 67rpv(;) . u,=-- (4.5) 

This additional velocity u, at the origin appears from the inner region as a 
modification of the velocity ‘at infinity’, from U to U+u,. The drag F, on the 
sphere is thus corrected by a term O(T4) and is no longer parallel to U. It is 
given by F, = - 6 ~ p ~ a ( l  + (ST)* A} U + O ( T ) ,  

where + -; 0 
A=(; ; 3. (4.6) 

The last column of A is the result of Childress (1964), who considered a sphere 
moving along the rotation axis. The remaining results were obtained in $2. 
Note that, owing to the rotation, A is asymmetric, so that a preferred direction 
of Coriolis deflexion emerges. 

For a particle of arbitrary shape and orientation the Stokes drag coefficient 
might have to be replaced by a drag tensor, in which case (even in the absence of 
rotation) the motion is not radial. However, the additional motion associated 
with the Coriolis forces is still given by the formulae (4.3) and (4.5). This is easily 
seen because the Stokes flow around an arbitrary finite body may be represented 
at  large distances as a superposition of a uniform stream, a Stokeslet and terms 
that decay more rapidly with distance. The strength of the Stokeslet depends 
only on the total force F exerted by the body on the fluid and is independent of 
its shape and orientation. For the outer solution obtained above only the 
Stokeslet enters, though, if carried to a higher approximation, the shape would 
be relevant (see appendix A). 

The effect of rotation on a particle can be examined by writing down Newton’s 
law for a mass point. It is consistent with the linearized analysis to assume small 
relative motions between the point and the fluid and slow changes in velocity. 
Hence, the force balance to O(Tt) takes the form 

where the particle velocity is (v, V,, 0) ,  

and p and p are respectively the fluid and particle densities. If, in addition, 
V, < rQ and it is recognized that Q/P = O(T), then the velocity components to 
O(T4) can be written as follows: 

V,  = ( QZr/ / l )  (I - $(&T)*), (4.8 a )  

(4.8b) 
15-2 
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a (4 
5~ 104 
2~ 104 
2~ 104 

5 000 
5 000 
5 000 

20 
20 
20 

Q (r.p.m.) 

5 000 
30 000 
60 000 

5 000 
30 000 
60 000 

5 000 
30 000 
60 000 

6 
3.9” 
3.9” 
5.3” 
0.4” 
l.oo 
1.4” 

T* (M‘ -M) /M 
0.16 0.081 
0.16 0.081 
0.22 0.111 
0.016 0.008 
0.040 0.020 
0.056 0.028 

6.5 x 10-5 3.3 x 10-5 
1.6 x 10-4 8.1 x 10-5 
2.2 x 10-4 1.1 x 10-4 

TABLE 2. Corrections in the ‘molecular weight’ of spherical particles due to 
the Coriolis modification of the Stokes drag law. v = 0.01 cmz/s 

The ‘classical’ result corresponds to T = 0. The sphere will sediment to O(T*) at 
an angle B given by 

a t  a speed V given by 
e = tan-l((vs/K) = -$(&T)* (4.9a) 

v =  (v;+v$)B = (szzrp)(l-$(&T)+).  (4.9b) 

One means of finding the molecular weight M of a sample in an ultracentrifuge 
is to use the relation (Bowen 1970) 

$(1-;) = fs, (4.10) 

where N is Avogadro’s number and f and s are the friction sedimentation 
coefficients, defined as 

drldt 
f = W t ’  QZr ’ 

(FA s = -  

Equation (4.10) is usually solved for M using the Stokes drag coefficient f. To 
see what change the altered drag coefficient will make in molecular-weight calcu- 
lations, compute M‘ andf’, the altered molecular weight and friction coefficient 
in the radial direction: 

M‘/M = f’ l f  = 1 +$(gT)*. (4.11) 

Thus the percentage change in molecular weight will depend directly on the 
change in the radial friction coefficient. The angle through which a particle is 
‘deflected’ is a direct measure of its size. Table 2 gives possible values. Thus it is 
seen that only for the smallest of particles treated should the Stokes law remain 
uncorrected. 

The motion of the sphere gives rise to a far-field effect that has intrinsic fluid 
dynamical interest. In  the case of rotating fluids of zero or very small viscosity, 
Taylor (1923) showed that a whole cylinder of fluid moves with a translating body. 
In  contrast to the presence of a Taylor column, the present situation of motion 
in a fluid having significant viscosity gives rise to cubical cones (both above and 
below the sphere) which have angular dependence and decay along the rotation 
axis. Both Childress (1964) and Bretherton (1967) encountered structures 
involving the same similarity parameter I X ’ ~ - ~ ( X ’ ~  + zJ2)9, where z‘ is parallel to 
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the rotation axis. An axisymmetric cone of this type was encountered by 
Childress (1964) in his analysis of the motion of a sphere along the rotation axis. 
Bretherton ( 1967) has examined an initial-value problem of a two-dimensional 
cylinder impulsively accelerated along the axis of a rotating fluid. He found 
a two-dimensional analogue of the cone and interpreted its structure in a way 
that is applicable here. The structures are composed of inertial waves that propa- 
gate along the rotation axis, have finite non-zero wavelength and zero frequency 
and decay through the action of viscosity. The present analysis concentrates on 
the Coriolis corrections to Stokes flow. 

The effect of the presence of bounding surfaces was examined in $3 .  Two 
parallel planes normal to the rotation axis and rotating with the centrifuge 
modify the motion of a particle on the midplane. It is found that the deflexion 
angle 8 is diminished to an extent which varies monotonically with wall separa- 
tion (at least to O(T*)). The component of drag transverse to F is found to 
decrease monotonically with wall separation but the component along F decreases 
with the separation to a minimum value, after which it increases to the value 
given by the unbounded problem. This minimum occurs because the wall effect 
decreases monotonically while the Coriolis effect increases monotonically with 
wall separation. As a by-product of the analysis, the wall effect on a particle in 
a non-rotating fluid was obtained. These results agree with those of Fax& (1922), 
who invoked the method of images. A more important by-product is the method 
of analysis here. By posing the governing equations for u: and 5 in matrix form, 
a self-adjoint matrix operator emerges. The Green’s matrix function that inverts 
this operator is then symmetric, so that there are great simplifications in the 
calculations that occur. The simplifications are especially apparent when the 
geometry allows two of the variables to be removed by Fourier transforms or 
series. It seems clear that a whole class of homogeneous rotating fluid problems 
could be profitably handled in this way. 

The support of the National Science Foundation Grants GK 31 794 (Engineering 
Mechanics Program) and GA-353-90X (Atmospheric Sciences Program) is grate- 
fully acknowledged. The calculations were performed a t  the Johns Hopkins 
Computation Center. 

Appendix A. Multipole expansion about the sphere 
The linearity of the problem implies that the effect of the sphere may be 

replaced by a distributed body force X(r) defined on 0 < r < 1. The inner 
equations are as follows: 

and 

It is well known that Green’s matrix {gji) for the Stokes-flow equations (T = 0) 
may be explicitly constructed (Happel & Brenner 1965, p. 79) and is defined by 
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the following equations: 

Lgji = v2tji - aPi/axj = - 4nSjiS(r - p), 

tji = SjiV2R(r, p) - PR(r, p)/axi axj, where 

R2 = (xi - &) (xi - &) 

and r-p = (xi--&)hi. 

Then, expressed as a system of integral equations, the inner equations become 
the following: 

where X ( p )  = (pJp = A ) ,  B(p) = (pJp < A}, A arbitrary 

Consider the body-force contributions to the velocity as given by (A 3 a): 

The body-force contribution to the pressure is given by (A 3 b )  

I n  order to  represent the presence of the sphere in the far field a multipole 
expansion of the first term in (A4u) (Morse & Feshbach 1953, p. 1276) can be 
performed to obtain a Laurent series about the point a t  infinity: 

where Fi, &, Fijk, etc. represent force, dipole, quadrupole, and higher contribu- 
tions to the velocity field. With this information, the distributed force X(r) can 



O n  the sedimentation of a sphere in a centrifuge 

be represented. The result of using this in (A 1 a)  is as follows: 
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where 

These integrals may be specified over B (p  < 1) since Xi = 0 for p > I .  is the 
drag on the sphere and I$ = - Si1 for a unit Stokeslet. The above scheme shows 
exactly how the higher moments may be computed and is therefore useful in 
obtaining an outer expansion of any number of terms [cf. Saffman 1965; though 
the factors l/a! are missing from his equation (3.1)]. Saffman has shown that the 
terms with odd numbers of indices relate to drag, lift and their moments, while 
even numbers relate to torque and its higher moments. The equations can be 
expressed in outer variables. Let r’ = Tar, P‘ = T-4P and v; = vi in (A 6). Since 

G(r’T-4) = T%Y(r’), 

, 8P’ a 
axj 

the result is 

(A 8) Vt2v; - ei3k v k  - = - T448(r’) + Tqj l  6(r‘) - . . . , 

and the effect in the outer region of the presence of the sphere becomes ordered 
in powers of TJ. 

Appendix B. The differential system (3.19) 
The matrix operator L of system (3.19) is defined on two-vectors such as 

Y = (z:), A = (z:). 
L is easily shown t o  be self-adjoint on the space of these vectors (Friedman 
1956, p. 148) subject to  the scalar product 

(Y, A) = s’ ( u l q  + uzvz)  dz. 
-1 

As a result (Friedman 1956, p. 173), Green’s matrix @(z,C) for L satisfies the 
symmetry condition 

Gij (z ,  5) = G j i ( [ ,  X )  ( i , j  = 1,2).  

Green’s matrix @ for system (3.19) can be written in the form 
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where 
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U and V are solutions of the homogeneous equation and respectively satisfy the 
boundary conditions at z = - 1 and x = 1. The 3 x 2 matrices A and B are 
unknown at the moment. If one applies the jump conditions 

then one obtains the linear algebraic system 

W r =  E or I?= W-lE, 

v2  v 3  u1 u2 u3 

where 

v’; v; v; u; u; u; 

71 72 7 3  x 1  x 2  x 3  

7; 7;. 7; x; x; x; 
is the Wronksian matrix of the fundamental matrix 9, 

Lagrange’s identity (see Ince 1926, p. 124) gives that there exists a constant 
matrix 9’ such that 

9’ = GkW, 
where W depends on the coefficients in L. Here 

0 

0 -2h2 0 1 - TL 
0 - 1  0 0 

0 0 0 

- 1  0 0 0 0 
0 0 0 0 

0 0 0 0 - 1  
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Hence I' = B-liP. Since the system (3.19) is self-adjoint, 

Q Q  
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where 0 is the 3 x 3 zero matrix and Q is symmetric. As a result, the Green's 
matrix has the form 

The matrices U, V and P are obtained from the following: 

3 

y;-A2 1 ' y3  sinh y3( 1 - z )  y1 sinh yl( 1 - z )  - 
7; - A2 

y1 sinh yl(  1 - z )  y2 sinh y2( 1 - z )  - 
7; - A 2  7; - A 2  

The constants yi and pi are determined by the three equations 

3 3 
( Y ~ - A ~ ) ~ + ~ ' ~ L Y ?  = 0,  C PnYn = 0, nFlm YnPn - - 0. 

n= 1 

The latter two follow from the boundary conditions. Choose 

P1 = (Y? - h2) (Y; - Y32)/Y1, 

P2 = (Y; - A2) (Y32 - Y?)/Y2, 

P3 = (Y: - A 2 )  (Y? - Y;)/Y3. 

The matrix P then has the form 
3 

PI1 = C 2 ,un sinh 2yn, Pz1 = C(cosh 2y3- coah zy,), 
n= l  

P31 = C(c0sh 271 - cash 2y2), 

sinh 2y3 sinh 2y1 sinh 2 y1 
P3 P1 Pl 

'12 = p217 p22 = (- +-), P32 = -c-----, 
sinh 2 y1 sinh 2 y 2  

P2 
= p317 p23 = p32, p33 = (7 +-) 3 

3 

where C = C ,,any;. 
n = l  
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